8 research outputs found

    A quality integrated spectral minutiae fingerprint recognition system

    Get PDF
    Many fingerprint recognition systems are based on minutiae matching. However, the recognition accuracy of minutiae-based matching algorithms is highly dependent on the fingerprint minutiae quality. Therefore, in this paper, we introduce a quality integrated spectral minutiae algorithm, in which the minutiae quality information is incorporated to enhance the performance of the spectral minutiae fingerprint recognition system. In our algorithm, two types of quality data are used. The first is the minutiae reliability, expressing the probability that a given point is indeed a minutia; the second is the minutiae location accuracy, quantifying the error on the minutiae location. We integrate these two types of quality information into the spectral minutiae representation algorithm and achieve a decrease of 1% in equal error rate in the experiment

    Spectral representation of fingerprints

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with a template protection scheme, which requires a fixed-length feature vector. This paper introduces the idea and algorithm of spectral minutiae representation. A correlation based spectral minutiae\ud matching algorithm is presented and evaluated. The scheme shows a promising result, with an equal error rate of 0.2% on manually extracted minutiae

    A Fast Minutiae-Based Fingerprint Recognition System

    Get PDF
    The spectral minutiae representation is a method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require as an input a fixed-length feature vector. Based on the spectral minutiae features, this paper introduces two feature reduction algorithms: the Column Principal Component Analysis and the Line Discrete Fourier Transform feature reductions, which can efficiently compress the template size with a reduction rate of 94%. With reduced features, we can also achieve a fast minutiae-based matching algorithm. This paper presents the performance of the spectral minutiae fingerprint recognition system and shows a matching speed with 125 000 comparisons per second on a PC with Intel Pentium D processor 2.80 GHz and 1 GB of RAM. This fast operation renders our system suitable as a preselector for a large-scale fingerprint identification system, thus significantly reducing the time to perform matching, especially in systems operating at geographical level (e.g., police patrolling) or in complex critical environments (e.g., airports)

    Fingerprint Verification Using Spectral Minutiae Representations

    Get PDF
    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and orientations suffering from various deformations such as translation, rotation, and scaling. The spectral minutiae representation introduced in this paper is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translations, so that they can be easily compensated for. These characteristics enable the combination of fingerprint recognition systems with template protection schemes that require a fixed-length feature vector. This paper introduces the concept of algorithms for two representation methods: the location-based spectral minutiae representation and the orientation-based spectral minutiae representation. Both algorithms are evaluated using two correlation-based spectral minutiae matching algorithms. We present the performance of our algorithms on three fingerprint databases. We also show how the performance can be improved by using a fusion scheme and singular points

    Binary Biometrics: An Analytic Framework to Estimate the Performance Curves Under Gaussian Assumption

    Get PDF
    In recent years, the protection of biometric data has gained increased interest from the scientific community. Methods such as the fuzzy commitment scheme, helper-data system, fuzzy extractors, fuzzy vault, and cancelable biometrics have been proposed for protecting biometric data. Most of these methods use cryptographic primitives or error-correcting codes (ECCs) and use a binary representation of the real-valued biometric data. Hence, the difference between two biometric samples is given by the Hamming distance (HD) or bit errors between the binary vectors obtained from the enrollment and verification phases, respectively. If the HD is smaller (larger) than the decision threshold, then the subject is accepted (rejected) as genuine. Because of the use of ECCs, this decision threshold is limited to the maximum error-correcting capacity of the code, consequently limiting the false rejection rate (FRR) and false acceptance rate tradeoff. A method to improve the FRR consists of using multiple biometric samples in either the enrollment or verification phase. The noise is suppressed, hence reducing the number of bit errors and decreasing the HD. In practice, the number of samples is empirically chosen without fully considering its fundamental impact. In this paper, we present a Gaussian analytical framework for estimating the performance of a binary biometric system given the number of samples being used in the enrollment and the verification phase. The error-detection tradeoff curve that combines the false acceptance and false rejection rates is estimated to assess the system performance. The analytic expressions are validated using the Face Recognition Grand Challenge v2 and Fingerprint Verification Competition 2000 biometric databases

    Extensions to Chua's Explicit Piecewise-Linear Function Descriptions

    No full text
    In this paper, we will extend the class of explicit piecevvise linear descriptions in the modulus form that was recently introduced by Chua cum suis. This is achieved by transforming a special form of a more general implicit description given by Van Bokhoven using the modulus transformation. This results in a set of base functions that can be used to compose the more general explicit description. It will be shown that with this set all previously presented explicit PL descriptions can be covered. Furthermore, we pose some problems that occur when trying to construct an even more general description.</p

    Preventing the Decodability Attack Based Cross-Matching in a Fuzzy Commitment Scheme

    Get PDF
    Template protection techniques are used within biometric systems in order to safeguard the privacy of the system's subjects. This protection also includes unlinkability, i.e., preventing cross-matching between two or more reference templates from the same subject across different applications. In the literature, the template protection techniques based on fuzzy commitment, also known as the code-offset construction, have recently been investigated. Recent work presented the decodability attack vulnerability facilitating cross-matching based on the protected templates and its theoretical analysis. First, we extend the theoretical analysis and include the comparison between the system and cross-matching performance. We validate the presented analysis using real biometric data from the MCYT fingerprint database. Second, we show that applying a random bit-permutation process secures the fuzzy commitment scheme from cross-matching based on the decodability attack

    Diagnosis of early stage knee osteoarthritis based on early clinical course

    No full text
    Background: Early diagnosis of knee osteoarthritis (OA) is important in managing this disease, but such an early diagnostic tool is still lacking in clinical practice. The purpose of this study was to develop diagnostic models for early stage knee OA based on the first 2-year clinical course after the patient’s initial presentation in primary care and to iden
    corecore